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of Maxwellian Molecules 
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The coupled Boltzmann equations describing the evolution of the velocity dis- 
tributions of a one-dimensional, two-component gas of Maxwellian molecules 
are analyzed. When the two species have different masses, the system 
approaches equilibrium. The complete eigenvalue spectrum of the linearized 
collision operator is obtained, and is found to exhibit an interesting dependence 
on the mass ratio. The response of one species to an external field, when the 
other species is regarded as a host fluid, is also examined. 
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1. I N T R O D U C T I O N  

The kinet ic  theory  of one -d imens iona l  gas models  has  been of interest  for 
some time. F o r  the h a r d - r o d  system, exact  so lu t ions  for the dynamics  have 
been obta ined .  (1 3) Subsequent ly ,  Resibois  (4) solved the p rob l e m of  
a p p r o a c h  to equ i l ib r ium of a h a r d - r o d  gas immersed  in a host  fluid having  
a s t a t iona ry  veloci ty d is t r ibut ion ,  and  Piasecki  (5'6~ examined  the response  
of this system to an externa l  field. A re la ted  model ,  consis t ing of  a mix ture  
of ha rd  rods  with two different masses,  has been s tudied  by  M a r r o  and  
Masol iver .  (7'81 This  mode l  has  the vir tue of  intr insic  a p p r o a c h  to 

equi l ib r ium ( that  is, wi thou t  the ass is tance of  a host  fluid ma in t a ined  in 
equi l ibr ium).  In  a recent  s imula t ion ,  (8) the dependence  of  the re laxa t ion  
t ime on mass  ra t io  was examined.  
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This paper is concerned with the kinetic theory of a one-dimensional, 
two-component gas of "soft" (Maxwellian) point particles, at the level of 
the Boltzmann equation. The eigenvalue spectrum of the linearized 
collision operator is obtained in Section 2, by an elementary method. The 
dependence of the relaxation time on mass ratio is found to be qualitatively 
similar to that observed in Ref. 8. In Section 3 the model is modified, with 
the massive particles regarded as a host fluid, and the response of the light 
particles to an external field is examined. 

2. ONE-DIMENSIONAL GAS MIXTURE 

Consider a one-dimensional gas of point particles, composed of two 
species, one with unit mass, the other with mass M. In like-species 
collisions the particles simply exchange velocities, and so these events may 
be ignored in studying the relaxation of the velocity distribution. Momen- 
tum and energy exchange in interspecies collisions do lead to relaxation. (7) 
In this section we examine the Boltzmann equation which describes this 
process. 

If u and v are the velocities of a mass-M and unit mass particle, respec- 
tively, prior to collision, then after they collide their velocities are 

2v + ( M  - 1 ) u 2 M u  - ( M  - 1 ) v 
u ' =  , v ' =  (1) 

M + I  M + I  

Let ~b(v, t) and ~(v, t) be normalized velocity distributions for the mass-M 
and unit mass species, respectively. The evolution of these distributions is 
governed by the coupled Boltzmann equations 

a~(v, t) 
- nM f du l u - v l  a ( l u -  vt )[IP(v', t) O(u', t) 

Ot 

- r t) ~(u, t)]  (2) 

#~b(v, t )  
f du l u -  vl a ( l u -  vl)DP(u', t)~b(v', t) o ~ -  n~ 

- ~,(u, t) ~(v, t ) ]  (3) 

where n M and nl are the number densities of the species, and we have 
assumed spatial uniformity and the absence of any external force acting on 
the particles. With the further assumption that the collision cross section is 
inversely proportional to relative velocity, 

o- o 
o-(lul) = lu--- [ (4) 
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i.e., "Maxwellian molecules,"determination of the eigenvalue spectrum of 
the linearized collision operator becomes quite straightforward. Accor- 
dingly, we linearize ~ and ~b about equilibrium 

r t) = r + r t ) ]  

r t ) =  r + r  t)]  

(5) 

(6) 

where 

M "~ 1/2 
~on(~) = \ ~ /  e ~ / 2 ~ T  (7) 

and similarly for ~beq(M ~ 1). In what follows, we take n~ = nM = n. Let 

x = u / ( k 8  T)~,,'2 (8) 

y = v/(k~ T) ~/2 (9) 

no- o ~ = ~ t  (lo) 

and let 

(2r01/2 ) 
- - ~  (11) 

, (2re) I/2 ) 
- - r  (12) q~(y,r)=~b' (k~r)~12 y, nao 

Using Eqs. (4) (12), the Boltzmann equations, linearized about 
equilibrium, may be expressed in dimensionless form 

~ ( ~ ,  ~) = f dye + b~, ~t + ~(~y + d~, ~) My2/2[~(ay 

- ~(x ,  ~ ) - ~ ( y ,  ~)]  

= F~(x, ~)+ (~q~(x, r) (13a) 

8 _ 
(b(x, r) = f dy e-Y2/2[~(ax + by, z) + q~(cx + dy, z) 

8~ 

- ~ (y ,  +) - ~(x, ~)] 

=/lq?(x, ~) + ff~(x, r) (13b) 
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where, from Eqs. (1), (8), and (9) we have 

2 a 
d = M + l = ~  (14a) 

M - 1  
c = = - b  (t4b) 

M + I  

If we let 7t(x, z) stand for the vector (~(x,~)~ then Eqs. (13a) and (13b) may 
be written 

( ~  + (2~)1/2)~p =_ j& gt (15) 

where 

~ = (P '+ (2rc)1/2i d ) (16) 
/ t  J +  (2=) 1/21 

with ~t the identity operator. Consider the Hilbert spaces ~ , =  L2(~, d#i) 
where #l = e-X2/2, ,ttz=x/-'~e-Mx2/2" I t  is straightforward to show that ~- 
is a self-adjoint, Hilbert-Schmidt integral operator on the direct sum 

|  The spectrum of ~ - ( 2 ~ ) ~ / 2 J  ( J  being the identity matrix)is 
therefore bounded above and below, and may possess an accumulation 
point a t  --(27C) 1/2. We now introduce a basis for ~1 |  Let 

' ( 5 )  Kp(x) : ~  H, (17a) 

Np(x)=2p/2~ Hp ((--~) l/Zx) (17b) 

where Hp is the Hermite polynomial. These functions have the 
orthogonality properties 

foo dx e x2/ZKp(x) Kp,(X) = (2re) 1/2 (~pp, (18a) 
-- oo 

f 2  d x c  Mx2/2Np(x) Np,(x):(2"~m)l/2(~pp, (18b) 

and their generating functions are 
co j S 

..... 7 K'< 

eS(,/Mx s /2 )_  ~.  81 -j=o~j., Nj(x) 

(19a) 

(19b) 
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We expand the velocity distributions as follows: 

(v,(r)  K,(x)~ (20) ~ ( x ,  ~) = 
N/(x)/  

where 

( M )  I/2 oo 
co/(r) = \~-~] f_ + dx e M*2/2N/(x) r z) (21) 

and similarly for D(r) if we take M ~ 1, N--+ K, and ~ ~ r Define the 
matrix elements 

l ov 
F/,k= ~ f ~  dx e-*=/ZK/(x) PKk(x) (22a) 

G/,, = ~ ~ dx e-X2/=K/(x) GNk(x) (22b) 

Hj'k = \'2-~ggJ -oo dx e Mx2/2Nj(x) [IXk(x ) (22C) 

J/'e = \2-@ f oo dx e Mx~/2N/(x) JNk(x) (22d) 

The matrix elements are readily computed using the generating functions. 
From Eqs. (13), (19a), and (22a) we have 

2Fj,K s/tk (M~ 1'2~ 
j.k ~ - - \ ' 2 - ~ Y C /  f_~  dXe-x2/2+s(x-s/2) 

x [f dye-myi/2(e,(Uy+b~-t/2)_e,(~-,/2))] 
= (2~z)'/2(e b*'-  e") (23) 

so that 

Fj, k : (2~)1/2(bk-- 1) aZk 

In the same manner, one finds 

Hj,k = Gj, k = (2~)'/2( Mk/2dk -- •k,O) a/,k 

s+,k = ( 2 ~ ) 1 / 2 ( ~  ~ - 1 ) aj ,~ 

(24a) 

(24b) 

(24c) 
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Thus, if we let X = (Vo, 0`)0, Vl, o,)1, v2, O , ) 2 , . . . )  then Eq. (13) is equivalent to 

dX 
- - = D X  (25) & 

with D block diagonal, the kth block having elements 

FJs Gj'k I (26) 

The eigenvalues of the linearized collision operator are those of each block 
on the diagonal of D. Since all (0, 0) elements vanish, there are two zero 
eigenvalues associated with the first block. The eigenvalues deriving from 
the kth block ( k )  1) are 

_(2rc)1/211 ( M - I ~  k 2eMk/2 ~ - \ M + l J  -T t V T ] ? J '  keven 
)~• (27) 

- (2r:) '/2 {1 T- [(M - 1) 2k -}- 22kMk] 1/Z'( 
1-~ j ,  k odd 

The associated eigenvectors, X~ ~), have c0j =vj = O, j r k, and 

i ( 1 )_+1 ' keven 

COK ! (M-- 1)* F ( M -  1) 2k ,/2 (28) 
2kMk/2 +_[- ~2~a7i ~ [- 1 , k odd 

From Eq. (27) we see that 2~ +) =)4 +) = 0, and that the remaining eigen- 
values are negative. The 2 = 0 eigenmodes correspond to conservation of (i) 
the number of unit-mass particles: 

1 Vo --1 ~X(+) + X(0- ~) ' x o  (29) f dx  e--X~/2gj(x, ~) = - (2~)1/2 2 t 

(ii) the number of mass-M particles: 

()-r '/2dxe-MxZ/26(x,z)=coo=~(X(o+) X(0 ))'X (30) 

(iii) total momentum: 

(kB~T~I/2 Ifdxe v2/2x~(x 75)q_M3/2 f dxg-Mx2/2X~(X, T)I 

= (kBT)l/2(Ul--~ ~(J,)l) = (kBT) 1/2 X~ § X (31) 
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(iv) total energy: 

2 ~ dx e X2/2x2~(x' ~)3t m3/2 f dx e-M~c2/2x2~(x' 7~) 

z - -  z - -  

These four conserved quantities correspond to the four degrees of freedom 
in the equilibrium state of a one-dimensional, two-component gas. They 
completely determine a time-independent velocity distribution. 

The highest nonzero eigenvalue, which controls the long-time 
relaxation of the velocity distribution, is 2(3 + ~. For M = 1, and again when 
M ~ o% 2~+)= 0. In either of these extreme circumstances, the velocity dis- 
tribution cannot relax to a Maxwellian, and the state variables--particle 
numbers, momentum, and energy--do not uniquely determine a time- 
independent distribution. For M ~ 1, we have 

3(27~)1/2 ( M -  1) 2 + O(M- 1) 3 (33) 

while in the opposite limit, M>> l, 

2 ( 3 + / = ~ +  O ~ (34) 

When M = 3 + 2 , , ~  ~- 5.8284, 12~ + )1 takes its largest value, 2~3 + ~ = (re~2) ~''2. 
In this regard, it is interesting to note that their molecular dynamics 
simulation of a l - d ,  two-component gas of hard rods, Marro and 
Masoliver (8) found that the relaxation time was shortest for a mass ratio of 
about 5. 

From Eq. (27) and Fig. 1, the following features of the spectrum are 
evident. When M =  1, all " + "  eigenvalues are zero, and all " - "  eigen- 
values equal -2 (2~)  ~/2, the latter representing the mixing of two pop- 
ulations distinguished solely by their initial conditions. When M ~  o% 
2(k-) = -2(2rr) 1/2 for k odd, and all other eigenvalues are zero. The nonzero 
eigenvalues in this case represent momentum relaxation of the distribution 
for the unit-mass particles, due to reflecting collisions. 

For 1 < M <  0% there is a discrete spectrum bounded above by zero 
and below by -2(2rc) I/2, and with an accumulation point at -(2re) 1/2. For 
the special value M = 3  + 2  xf2, 12~+)1 takes its maximum, and 2(-)2~+ 11 its 
minimum value, while 2(2~ ) -(27r) 1/2. Also, ~(+) and ~(+) = "~2k "~2k-- 1 are degenerate 
at this point. For intermediate M values, the highest nonzero eigenvalues, 
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Eigenvalue spectrum of the linearized collision operator, Eq. (34). Selected eigen- 

values, labelled by number  and sign, are plotted versus mass ratio M. The first 50 eigenvalues 
for M = 3 are denoted by horizontal lines. 
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2~ +) and 2(4 +), are nearly degenerate, but are well separated from the other 
eigenvalues. Deviations from equilibrium which are even in y, (i.e., energy, 
as opposed to momentum relaxation), have a relaxation time 1/12~+)1, 
which is in general slightly shorter than 1/12(3 +)l, which governs momentum 
relaxation. 

As noted above, the spectrum of the collision operator is bounded 
below because this operator is the sum of a compact operator and a mul- 
tiple of the identity. This is not true for the hard-core model, in which case 
we have, in place of Eq. (15), 

--(x,r)=)~(x)-~(x) ~(x) (35) 
dr 

where 9? is an integral operator and ~ ( x )  is the unbounded multiplication 
operator 

(2re)'/ x e r f L t - 2 - )  x l + ~  (36) 

~ ( x ) = ( k e r ) l / 2  o[ x "~ . ~ x2/2 
(2g)1/7 X erI t ~ )  + ze  

Thus, in the case of hard-core particles, the collision operator spectrum is 
not bounded below. In the case of Maxwellian molecules in three dimen- 
sions, the spectrum is not bounded below, for the collision term includes a 
noncompact integral operator. (9) 

3. GAS OF P A R T I C L E S  A C C E L E R A T E D  BY AN E X T E R N A L  
FIELD 

To study the response to an external field, we modify the model con- 
sidered in the preceding section in two respects: The unit-mass particles 
now experience a constant acceleration A, and the mass-M particles are 
taken as constituting a host fluid with stationary velocity distribution ~b(v). 
The velocity distribution for the umt-mass particles is now governed by the 
linear Boltzmann equation 

8~(v, t) 80(v,c3~ - f c?----"~ + A du l u -  vl a ( l u - v ] )  

x {0(v', t) ~b(u') - 0(v, t) ~b(u)] (37) 

The case of hard rods (o = 1) interacting with a host fluid (also composed 
of unit-mass particles) at zero temperature [~b(v)= 6(v)] was treated by 
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Piasecki, (5'6) who pointed out that in this case the response is inherently 
nonlinear: the mean velocity in the steady state is 

knnM/ 

In what follows we consider Maxwellian molecules, with r given by 
Eq. (4). Setting M =  l, (so that v '=  u, and u ' =  v), Eq. (37) takes the form 

t) z) 1 
C----~ - - + A  C----~-- - f [0(v, t)-~b(v)] (39) 

where ~ = (nMao) - 1. 
It is not hard to show that for ~b(v)= 6(v), and qz(v, t =  0 ) =  6(v-Vo),  

O(v, t )=e  ~ v~ (Af) t e-V/AeO(v) O(t--v/A) (40) 

where 0 is the Heavyside step function, so that the average velocity is 
O( t )=voe - ' / e+Ag(1 -e  '/~). From Eq. (39) it is also easily seen that for 
an arbitrary ~b(v), normalized and with finite first moment, the average 
velocity in the steady state is 

e = A e +  vO(v) (41) 
o o  

Hence for Maxwellian particles linear response holds quite generally. 
Responses intermediate between Eq. (38) and Chin's law may be 

obtained by taking M =  1, ~b(v)= 6(v), and a( lvf)= aoJVl-~. One then finds 
the steady state velocity distribution to be 

0(v) = const O(v) exp (2 - ~) Ae (42) 

so that ~ocA 1/(1-~). Evidently, the nature of the response to an external 
field is determined by the velocity dependence of the cross section for 
interspecies scattering. 

Another case which is amenable to simple analysis is the "Lorentz" 
limit: infinitely massive, motionless, and uniformly distributed host-fluid 
particles. In the intervals between collisions, the unit-mass particles 
accelerate at a constant rate A, and at each collision they suffer a velocity 
reversal. Owing to the assumption of Maxwellian particles, the collision 
probability (per unit time) is independent of velocity. For this case Eq. (37) 
becomes 

C0(v, t) C0(v, t) 1 
- - + A  - - -  _ [0(v, t ) - O ( - v ,  t)] (43) 

Ct Cv 
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Taking the first moment of this equation, one finds for the average velocity 

A'g e 2~/~) iF(t) = ~ -  (1 - (44) 

Although the average velocity saturates as t ~ o% the velocity distribution 
does not attain a steady state. For if we define the moment-generating 
function 

~, Xn 
g(x, t)= -~. vn(t) 

n = O  

then from Eq. (43) we have 

ag (x, t)= Axg(x, t) - 1  [ g ( x ) - - g ( - x ) ]  
0t 

(45) 

(46) 

If g is split into parts even and odd in x, then Eq. (46) yields a pair of 
simple coupled equations for the components of g. For the initial condition 
0(v, 0) = 6(v), which implies g(x, 0) = 1, one finds 

 47, 
1 + A f x  

which clearly does not approach a steady state. The mean-square velocity 
is 

v2( t )=A2~[t+~(e  2~/~_1)] (48) 

For large t and small x 

g(x, t) ~_ (1 + �89 e ~l/2~A2x~-' (49) 

from which it is evident that v 2r and v 2r+I grow oct r for large t. In the case 
of particles diffusing in velocity space, and subject to constant acceleration 
A, the moment-generating function is 

gD(x, t) = eAXte Dx2' (50) 

where D is the diffusion coefficient and we have again assumed the initial 
condition ~O(v,O)=6(v). Comparing Eqs. (49) and (50), we see that 
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acceleration and collisions combine to produce diffusion, while unbounded 
increase of the mean velocity is, as expected, thwarted by collisions. 

For  the intermediate case, 1 < M <  oe, and with r  6(v) as before, 
Eq. (37) takes the form 

0r t) Or t) 1 
t-A - - -  _ [ p ~ ( - p v ,  t ) -~k(v ,  t)]  (51) 

Ct Cv r 

where # = ( M +  1 ) / ( M -  1). The nth moment  of Eq. (49) is 

d v ' ( t ) = n A v "  l ( t i - l [ 1 - ( - , u )  "IvY(t) 
dt 

(52) 

where the second term in Eq. (51) has been integrated by parts, assuming 
that ~bvn~ 0 as tvl ~ oc. If ~ = 0  initially, then the n = 1 equation yields 

Af  [ - 1 - e  /1+~ ~)t/~] (53) v ( t ) -  1 + # 

The nth moment  is given by 

fo E1 I u)-"]l, cl/~vn-l(t, ) dt' (54) v"(t) = nA e 

from which it is apparent  that if v n-  1(0 possesses a limit as t ~ 0% then so 
does v"(t). Since the average velocity, Eq. (53), saturates as t--, 0% it 
follows that all higher moments do so as well. It is only in the limit M-- ,  oe 
that v 2 and higher moments  increase without bound as t ~ oe. 
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